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Chapter 1

Introduction

1.1 | Introduction to Climate Transition Risk
Climate change presents significant challenges to human society and global economic activity. Existing
national and international climate related policies will result in a global temperature increase ranging
from 2.1°C to 3.9°C by 2100, compared to pre-industrial levels. The global community is increasingly
becoming aware that climate change not only poses risks to the environment but also creates significant
financial risks and economic consequences, thereby affecting the overall stability of the financial system.

As extreme weather events become more frequent and intense, businesses face heightened vulnerabilities,
from supply chain disruptions, property damages, escalating operational costs, etc. This is referred to as
the physical climate risk. However, the transition risks, i.e. the financial stress that the companies face as
they transition to a low carbon economy, are equally important and need to be identified, quantified and
managed.

Financial institutions, including banks, have started to recognize the critical importance of proactive risk
mitigation on their asset portfolios. In many ways, Climate Risk Stress Testing on financial institutions’
asset portfolios is the first step in understanding and dimensioning the scale of the potential stress on
balance sheets, which ultimately leads to a Capital Adequacy problem - something that the Central Banks
have had intense focus on in recent times.

To limit global warming to 1.5°C above pre-industrial levels, society as a whole, must accelerate the
decarbonization process, collectively achieving net-zero emissions by 2050. The Basel Committee also
issued a consultation paper seeking feedback on a potential Pillar 3 disclosure framework for climate-related
financial risks. The goal is to promote comparability of banks’ climate risk profiles and enable market
participants to better understand banks’ exposures. Within the strategic initiative of attaining Net Zero by
2050, governments have undertaken to allocate substantial resources and create a robust policy framework
to reduce greenhouse gas (GHG) emissions. This undertaking has significant implications for key economic
sectors, encompassing energy, transportation, mining, manufacturing, etc.

However, modelling for transition and physical risk is a complex exercise and have a number of inter-
dependent variables that will need to considered: For example, a financial institution will need to
understand and project the following before an effective stress testing model can be implanted:

1. Identifying potential transmission channels to financial stress: This is a critical consideration.
There could be multiple ways that a firm is exposed to transitional climate related financial stress.
For example, following are some of the transmission channels:
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■ A firm may be subject to Carbon Prices, negatively impacting EBITDA
■ Suffer a loss in market share because of changes in client preferences
■ Significant capital outlay to transition to greener technologies without corresponding incremental

revenues
■ Stranded assets as a result of regulatory changes

2. Project the sources of risk climate action pathways: There are three major sources of
transition risk that will need to be accounted for and projected. These are discussed below:

■ Local Regulatory Changes: This includes any regulatory changes that are enforced by a country,
e.g., levying carbon prices generally or on specific sectors. These could also take the form of
fossil fuel excise taxes etc. These changes can potentially be projected in the context of country’s
Nationally Determined Contributions (“NDC”). In other words, the Climate Action Pathways
adopted or expected to be adopted by the local regulator are an important consideration.

■ International Regulatory Changes: Measures such the Carbon Border Adjustment Mechanism
(“CBAM”) that will become effective in the EU in 2026, essentially makes non-EU jurisdiction
subject to these regulations and hence to the transition risk. Identifying clients, potentially
exposed to international regulations in effect or becoming effective at a future date is, critical
and must be incorporated in the stress testing model.

■ Climate Related Economic Trends: This area is quite broad but important to consider. This
attempts to identify industry or consumer behaviour trends that could negatively impact a
particular client. In other words, this is about identifying Early Warning Signals (“EWS”)
on how the global efforts to combat climate change and the rising awareness could impact an
industry generally and a particular client specifically.

For example, global banks decided to stop funding coal fired power generation plants restricting
access to liquidity for the affected companies. Airline industry continues to be under pressure
to reduce emissions albeit without any viable solution. It is important for risk managers at
banks to be fully aware of such developments.

3. Emissions data and clients’ disclosures

■ While the climate action pathways are important, the starting point is to make sure that the
data related to current emissions is accurate to the extent possible. In addition to relying on
publicly and privately reported data, the issue of gaps in data can be addressed by clustering
and distance algorithm, which is discussed in later sections.

4. Companies’ plans and initiatives to reduce Emissions

■ While the stress tests can initially be run on the basis of companies maintaining status quo in
terms of efforts to reduce Emissions, this is not practical. It is fair to assume that the firms
will undertake any number of steps or projects to reduce GHGs and these in turn, would have
financial implications.

There could be several avenues to achieve this. For example:

i. A company can opt to borrow more funds to enhance its carbon emission reduction initiatives. This,
however, leads to an increase in leverage and a subsequent rise in the probability of default (PD).

ii. Secondly, acquiring a company specializing in green practices emerges as a viable strategy, resulting
in a reduced carbon-to-revenue ratio. Yet, this endeavor also often involves borrowing more,
contributing to increased leverage and deteriorating PD.
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iii. Regulatory change could force companies to offset their emissions by purchasing credits. This
approach requires additional expenditures and, consequently, increased borrowing.

Regulators like Central Bank of United Arab Emirates (CBUAE) and Bank of Canada (BoC) are
keen for the financial institutions, regulated by them, to undertake stress testing exercise and also
disclose the results and approach as a first step to strengthen banks’ risk management practices and
build capabilities towards resilience to climate-related financial risks.

From the perspective of the financial institutions, the ultimate objective of these stress tests is to quantify
the impact of transition risks on the PD of the firms they have exposure to. Like all other stress tests, the
impact of climate risk will need to be assessed under different scenarios which typically reflect different
action pathways to achieving net zero 2050 objective. Once quantified, navigating these financial risks
requires a strategic and forward-thinking approach from financial institutions to foster a smooth transition
towards a sustainable and low-carbon future.

1.2 | Introduction to Climate Risk Scenarios
Climate-related risks are subject to significant uncertainty in terms of their timing, frequency and severity.
Despite this uncertainty, forward-looking assessment approaches are crucial to effectively address these
risks. Scenario analysis is a pivotal tool for evaluating the potential impact of climate change on economies
and financial systems. It’s important to note that these scenarios are not intended to make forecasts
or make comprehensive predictions. Rather, they explore different plausible global transition pathways
consistent with achieving specific climate targets. These scenarios take a conservative approach and
include technologies that are not currently commercially available or may face scalability challenges in the
future.

Essentially, there could be any number of different way of conducting stress tests that should reflect all or
some of the variables discussed above.

In this paper we discuss the implementation of two approaches that have also been proposed by Central
Bank of United Arab Emirates (“CBUAE”) and Bank of Canada (“BoC”). Both theses approaches rely
on different climate scenarios developed by the Network of Central Banks and Supervisors for Greening
the Financial System (“NGFS”) but differ in terms of the transition mechanism. While BoC’s approach
is based on modelling the change in market share of firms operating in a particular sector in a certain
geographic area, CBUAE looks to model the impact on EBITDA as a result of the carbon price.1

Climate Action Pathway Scenarios:

■ Current Policies (+3.0◦C): Baseline scenario, with no or little change of current policies to combat
climate change, causing high physical risks but minimal transition risk with global temperature
increase by more than 3 degrees;

■ Net Zero 2050 (+1.5◦C): Coordinated global policy implementation (Paris Agreement) to combat
climate change and limit the global temperature increase to 1.5 degrees, implying moderate transition
risks;

■ Delayed Transition (+2.0◦C): Delayed policy implementation creates a “Minsky Moment” with high
transition risks.

1Please refer to the Network for Greening the Financial System https://www.ngfs.net/ngfs-scenarios-portal/
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■ Immediate Transition (+2.0◦C): Immediate collective global action is taken to reduce emissions
toward a target of below 2°C.

In all scenarios, the assumption is a global collective effort to reduce emissions. In the immediate transition
scenario, this action is assumed to have commenced in 2020, while the delayed transition scenario envisions
action starting only in 2030. Due to the postponement in the latter case, emissions must decrease rapidly,
post 2030, to compensate for lost time and offset the additional emissions linked to the delay, necessitating
a significant transition by mid-century. The emission trajectories for both the below 2°C immediate and
delayed scenarios are derived from countries’ Nationally Determined Contributions (“NDC”) submissions,
adjusted to align with the ambition and timing of each respective scenario.
In the following chapters, we will mainly focus on these scenarios, to analyse the climate risk impact on
different portfolios and companies.

1.3 | Introduction to Methodologies
In assessing the impact of climate risk, regulatory authorities including CBUAE delineate two potential
methodologies that banks can employ to conduct thorough analyses of transition risk scenarios. These
strategic approaches aid banks in proactively identifying, assessing, and addressing potential risks arising
from the transition to a low-carbon economy.

1. Bottom-up approach: Bottom-up analyses are based on issuer-specific data. The target is to
process a detailed analysis on banks’ top or largest non-financial corporate (NFC) exposures, within
pre-defined economic sectors that are subject to high transition risk.

2. Top-down approach: Top-down analyses are characterized by estimating financial losses at the level
of portfolios, sectors or institutions. No distinction is made between assets or issuers within the
same sector. Banks can leverage and build on their IFRS 9 models to analyse the sectoral impact
from climate risk scenarios.

Within our report, Chapter 2 will introduce a Top-Down Approach in transition risk scenario analysis.
This chapter primarily centres on the market shock under different climate scenarios at the sector level and
examining their impact on portfolio valuation. In Chapter 3, we will introduce a Bottom-Up Approach to
assess the carbon cost sensitivity of individual companies across different climate scenarios. This chapter
aims to illustrate how the carbon cost will influence default probability.
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Chapter 2

Market Shock Approach : A
Top-Down Approach in Transition
Risk Scenario Analysis

2.1 | Valuation of the Loan Portfolio
We consider a certain loan portfolio. We denote Aj(t0, Tj) as the financial valuation of loan j at time t0,
and Tj is denoted as the maturity of the loan j. Then, the valuation of the loan portfolio at time t0 is
written as

A(t0) =
∑
j

Aj(t0, Tj). (2.1.1)

For simplicity, we consider the expected value of the loan at time t0 as the valuation of the loan at that
time,

Aj(t0, Tj) = pj(t0, Tj)rjFj + (1− pj(t0, Tj))Fj = Fj − Fj(1− rj)pj(t0, Tj), (2.1.2)

given the recovery rate as rj , the face value of the loan j as Fj , and the probability of the default of loan
j at time t0 as pj(t0, Tj).

Now, we introduce a policy shock at time t0. Here, the policy shock implies that the economy switches
from a business-as-usual scenario, which we denoted as the Baseline (B), to a new scenario P, because of
the change of the policy. This will lead to the change in the valuation of the loan. Keeping same rj and
Fj , we have

∆Aj(t0, Tj , P ) = Aj(t0, Tj , P )−Aj(t0, Tj , B) = −Fj(1− rj)∆pj(P ), (2.1.3)

where ∆pj(P ) denotes the difference between the default probability (PD) given a change in the scenario
from B to P. This ∆pj(P ) change is the negative of the change in valuations for the loan. That is, if the
value goes down, it is due to an increase in provisions driven by the change in probability.

Now the question is, HOW does the change of the scenario, or we say, change of the policy lead to the
change in the PD ∆pj(P ), in other words, what is the transmission mechanism to the financial stress.
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2.2 | Compute the Market Share and the Market Shock
Let’s go back to the data obtained from Bank of Canada to see which variable or variables will be
influenced by the change of the policy from B to P.

Bank Of Canada Climate Scenario Data (BoC dataset) contains energy information spanning multiple
sectors across global regions. Within the BoC dataset, we concentrate on the Primary Energy market
value, which encompasses seven distinct forms of primary energy, i.e. (i) bio-energy, (ii) coal, (iii) gas,
(iv) hydro, (v) nuclear, (vi) oil, and (vii) renewable sources such as wind and solar. These energy sector
market sizes are aggregated based on various geographic regions, including Africa, Canada, China, Europe,
India, Japan, the United States, and the rest of the world.

Similar to the NGFS Scenarios discussed in Chapter 1, BoC dataset analysis introduces four policy
scenarios that will be rewritten here as:

■ Baseline (2019 policies) — baseline scenario consistent with climate policies in place at the end of
2019.

■ Below 2°C Immediate — immediate policy action scenario to limit average global warming to below
2°C.

■ Below 2°C Delayed — delayed policy action scenario to limit average global warming to below 2°C.

■ Net-Zero 2050 (1.5°C) — more ambitious immediate policy action scenario to limit average global
warming to 1.5°C that includes current net-zero commitments by some countries.

These policies are implemented over the period spanning from 2020 to 2050, with a 5-year interval.
In addition to the current market size, BoC dataset also includes data on market sizes across diverse
geographic regions under various policy scenarios for specific years. In Figure 2.2.1, we present select
examples of the data. Taking the geographic sector of Africa as an example, we illustrate the market
size of the bio-energy sector under various climate scenarios over the time-frame from 2020 to 2050. It is
evident how the market size of the bio-energy sector changes, prompting an exploration into the potential
impact on loans extended to the companies in this sector.

Knowing the market size of each energy sector, it is straightforward to obtain the Market Share of each
energy sector. To be more specific, if we take the primary energy sector Coal in geographic region Global
under Baseline policy in 2020, the Market Share of Coal is

Market Share(Coal,Global,Baseline, 2020) = market size(Coal,Global,Baseline, 2020)
total market size (Global, Baseline, 2020) × 100, (2.2.1)

where the total market size (Global, Baseline, 2020) is the total market size of all primary sectors in Global
under Baseline policy in 2020.

Figure 2.2.1: BoC dataset example
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Figure 2.2.2: Global primary energy by source in four policy scenarios.
Image source: https://www.bankofcanada.ca/2022/01/climate-transition-scenario-data/

Figure 2.2.2 extracted from the Climate transition scenario data report published by BoC shows global
changes in the primary energy Market Share over time under different policy scenarios. It is evident that
adherence to the baseline policy will lead to a gradual expansion in the overall market size over time, with
the Market Share of traditional energy sectors such as oil, coal, and gas also showing growth. Conversely,
opting for the Net-Zero policy will result in fluctuations in the total market size, while the Market Share
of traditional energy sectors experiences a notable decline, accompanied by an increase in the Market
Share of clean energy sources like renewable energy (wind and solar) and bio-energy.

So it is important that we quantify the change of the Market Share under different policy scenarios
compared with the Baseline scenario. To derive this we introduce the Market Shock, which is defined as
the change in a particular sector’s Market Share under different scenarios and is given by the formula
2.2.1:

Market Shock(P ) = Market Share(P )−Market Share(B)
Market Share(B) , (2.2.2)

where we compute the Market Share(P ) and the Market Share(B) using the data of the same energy
sector from the same geographic region in the same year. Thus, the Market Shock(P ) represents the
percentage change in the Market Share if policy scenario P is adopted compared with the Market Share
under the Baseline policy.

2.3 | From Market Shock to the Change in Valuation
Now we are going to discuss how the Market Shock will influence the change in the PD. Intuitively, a
decrease in the Market Share of a sector and consequently the companies in that sector, will lead to some
level of financial stress, potentially leading to a rise in the PD. This, in turn, will negatively impact the
valuation of loans to the sector.

In other words, a relative change in the PD is inversely proportional to the shock in Market Share. What
must be kept in mind is that the PD of every company will not respond to the Market Shock to the
same extent. Put differently and borrowing the concept from physics, the elasticity of the transmission
mechanism from Market Shock to change in PD is critical to determine, recognizing the fact that the
PD of every firm, even within the same sector can exhibit different elasticity. Determining this elasticity
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parameter, currently sits outside of our model. However, we are in the process of developing advanced
models for the elasticity parameter χ, aiming to capture the market dynamics and accommodate more
complex scenarios.

We introduce the elasticity parameter, χ, to denote this elasticity, and make the simplifying assumption
that each firm responds to the market stress it encounters by yielding the same proportion of changes in
PD.

∆pj(P ) = −χMarket Shock(P ). (2.3.1)

Then, plugging the equation 2.3.1 into equation 2.1.3, we obtain the change in the expected value of the
loan, conditional to a Market Shock when we change the policy scenario B to scenario P:

∆Aj(P ) = Fj(1− rj)χMarket Shock(P ). (2.3.2)

Summing all the loans j in the portfolio, we obtain the total valuation change as

∑
j

∆Aj(P ) =
∑
j

Fj(1− rj)χMarket Shock(P ). (2.3.3)

2.4 | Results
We apply the valuation model to the assumed Climate Loan Portfolio Data to demonstrate the result.
This data set contains simulated loan data of two fictitious portfolios: Portfolio A and Portfolio B. The
portfolio of loans are from different geographies and sectors. Figure 2.4.1 is a subset of the dataset,
showing the loan information of different portfolios.

By referring to Figure 2.2.2, it becomes evident that under the Below 2°C Delayed policy, the Market
Share of oil remains relatively stable until 2030, after which it exhibits a continuous decline. We can
obtain the Market Shock of oil with respect to the Below 2°C Delayed policy using equation 2.2.1 and
equation 2.2.2. Then, we select the sample loan LoanID626UnOi, which is in oil sector, to compute its
valuation under Below 2°C Delayed, given the face value Fj = 5, 940, 895 and the recovery rate rj = 0.4,
set χ = 1, we can calculate the loan’s valuation spanning from 2020 to 2050, with intervals of 5 years.
Figure 2.4.2 illustrates change in loan values to Market Shock. It becomes apparent that the loan value
remains unchanged until the Market Shock emerges in 2030.

Figure 2.4.1: Climate Loan Portfolio Data example
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Figure 2.4.2: Compare the change in loan value with the Market Shock

Figure 2.4.3: The result of change in PD and value of the selected loan portfolio

Additionally, we offer users a selection panel to choose the portfolios, regions, and sectors of their interest,
according to the data they have uploaded. To present the results more visually, we will specifically add the
option for our uploaded example loan data worksheet from both Portfolio A and Portfolio B, focusing on
loans within the Oil, Hydro, and Bioenergy sectors, and spanning across the European and USA regions.
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(a) Loan Portfolio A. (b) Loan Portfolio B.

Figure 2.4.4: The aggregate change in value of the different selected loan portfolios under different
climate scenarios.

Figure 2.4.5: The aggregate change comparison between Portfolio A and Portfolio B under different
climate scenarios.
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(a) The Market Shock in oil sector
in Europe.

(b) The Market Shock in hydro
sector in Europe.

(c) The Market Shock in bio-
energy sector in Europe.

(d) The Market Shock in oil sector
in USA.

(e) The Market Shock in hydro
sector in USA.

(f) The Market Shock in bioenergy
sector in USA.

Figure 2.4.6: Market Shocks of different regions and sectors under different scenarios..

We can subsequently present the outcomes of change in the PD and loan value for each loan across various
years and scenarios, as depicted in a table similar to Figure 2.4.3. Each page will display the results
for an individual loan, allowing users to navigate through pages to assess different loans. Additionally,
Figure 2.4.4 will demonstrate the cumulative value changes in the selected loan portfolio across different
climate scenarios. Users can further conduct a direct comparison between the portfolios of Portfolio A
and Portfolio B using Figure 2.4.5.

Furthermore, we will present Market Shocks corresponding to various climate scenarios, determined by
user selections, as illustrated in Figure 2.4.6. This allows for a direct comparison of Market Shocks,
offering a clear perspective on the potential changes in PD and values. This proves beneficial even when
specific loan data for that sector and region is unavailable.

2.5 | Conclusion
In summary, to derive the changes of the portfolio valuation under different policy scenarios, we should
proceed with the following steps:

■ Read the loan portfolio dataset and classify the loan into different sectors.

■ Obtain the market size of each sector under different policies. The data may be obtained from
central banks and other regulatory bodies.

■ Calculate the Market Shock of each sector under different policies using equations 2.2.1 and 2.2.2.

■ Estimate the elasticity parameter χ. Then equation 2.3.1 gives the change of the PD.

■ Now we can obtain the change in the valuation of loan using equation 2.3.2 and 2.3.3.
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Chapter 3

Carbon Cost Sensitivity: A
Bottom-Up Approach in Transition
Risk Scenario Analysis

3.1 | Introduction of the Carbon Cost
The NGFS transition scenarios, including Delayed Transition and Net Zero 2050 as introduced in Chapter
1, presuppose a significant rise in carbon prices, leading to a decrease in CO2 emissions.

■ Current Policies (+3.0◦C): Baseline scenario, with no or little change in current policies to combat
climate change, causing high physical risks but minimal transition risk with global temperature
increase by more than 3 degrees;

■ Net Zero 2050 (+1.5◦C): Coordinated global policy implementation (Paris Agreement) to combat
climate change and limit the global temperature increase to 1.5 degrees, implying moderate transition
risks;

■ Delayed Transition (+2.0◦C): Delayed policy implementation creates a “Minsky Moment” with high
transition risks.

Carbon pricing, often referred to as the shadow price of carbon, serves as a proxy for carbon policies. It
can be narrowly construed as a carbon tax per tonne of CO2 emissions, added to the selling price of a
product based on the quantity of greenhouse gases emitted during its production and/or use. Certain
carbon taxes may directly apply to a company’s or sector’s emissions.

From a company’s standpoint, the carbon tax will impact the company’s EBITDA. In the following
sections, we will show the structural transmission from carbon price to the PD of a company.

3.2 | From Carbon Price to Total Asset Value Shock
Denote CE(i, j, t) to be the emissions in tons of CO2 equivalent emitted by the borrower company i in a
given region j at date t. Each region j has a representative carbon price (CP or CP (j, k, t)) for each date
t in each climate scenario k. Normally, CP will change along with the the time t in scenarios of Delayed
Transition and Net Zero 2050, however, the baseline scenario k = 0, which is the current policy, will keep
the carbon prices stable:

12
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CP (j, k = 0, t) = CP (j, k = 0, t = 0). (3.2.1)

Each year, each borrower company has the carbon cost (CC) derived from the company activities in each
region j in the set G regions where the company has reported emissions:

CC(i, k, t) =
∑
j∈G

CE(i, j, t)× CP (j, k, t). (3.2.2)

To simplify the carbon cost model, we make the assumption that each borrower company will report
emissions in a single region exclusively. Thus, equation 3.2.2 can be rewritten as:

CC(i, k, t) = CE(i, j, t)× CP (j, k, t). (3.2.3)

Now the question is, how can we obtain the carbon emission CE(i, j, t)?

As for companies who report the emission data to aggregators, such as Bloomberg, we can read the Scope
1 and Scope 2 carbon emission directly. However, for some companies who do not report carbon emission
data, we refer to a proxy measure based on industry level emission multipliers. CO2 emission multipliers
are introduced in the IMF Climate Report Dashboard1. These multipliers signify the volume of CO2
released into the atmosphere due to both Scope 1 and Scope 2 fuel combustion per million USD of output.
For instance, the emissions associated with one million USD of electricity encompass the Scope 1 emissions
from the electricity producer as well as the Scope 2 emissions embedded in inputs used during electricity
production (such as transportation services for transporting fossil fuel to the electricity plant).

If we denote the carbon multiplier as M(j, s, t) in a given region j and sector s at time t, and the revenue
of each borrowing company as Rev(i, j, s, k, t), we can calculate the carbon emissions using the formula:

CE(i, j, t) = M(j, s, t)×Rev(i, j, s, k, t)/($100, 0000). (3.2.4)

However, it is unfeasible for us to ascertain the revenue of each borrowing company under various
climate scenarios. To address this challenge, the NGFS introduced the G-cubed model, designed to
comprehend the sectoral impact on a company’s output projections concerning climate change, utilising
NGFS scenarios. The revenues of a company i in the respective sector j can be proportionately reduced
based on the decline in the product of output and price for the corresponding sector under different
climate scenarios k. Consequently, the future revenue Rev(i, j, s, k, t) can be derived from the baseline
revenue Rev(i, j, s, k = 0, t) by

Rev(i, j, s, k, t) = Rev(i, j, s, k = 0, t)× (1 +O(s, k, t))× (1 + P (s, k, t)), (3.2.5)

where the O(s, k, t) is the output trajectories under the transition scenarios k as a percentage deviation
from the Current Policies scenario k = 0, the P (s, k, t) is the producer price trajectories under the
transition scenarios k as a percentage deviation from the Current Policies scenario k = 0.

Next, we can calculate the carbon cost by substituting equations 3.2.5 and 3.2.4 into equation 3.2.3. Given
that the carbon cost is incorporated in the cost of goods sold, integrating this carbon cost results in a
shock to EBITDA, defined as

ξ(i, k, t) = CC(i, k, t
EBITDA(i, k = 0, t = 0) . (3.2.6)

1https://climatedata.imf.org/pages/re-indicators/#re3
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The impact of the variation of EBITDA on total asset value VA can be computed through Ri (VA-EBITDA
ratio). The assumption we take is that, this Ri ratio remains constant over time and across different climate
scenarios. In this case, the shock is directly transmitted to the VA. The economic shock transmission to
the total asset value of each company i, in each scenario k and at each date t is

VA(i, k, t) = (1− ξ(i, k, t))× VA(i, k = 0, t = 0)

= (1− ξ(i, k, t))×Ri × EBITDA(i, k = 0, t = 0).
(3.2.7)

The VA-EBITDA ratio will be different for individual firms and will depend on factors such capital
structure, accounting policies etc. We propose that the Ri is calculated with reference to past three years
of company specific data, taking note of any specific changes that may have a significant impact on this
ratio and making adjustment accordingly.

In the next section, we look at Merton’s model and illustrate its application to the quantification of
corporate PD in the context of transition risk analysis.

3.3 | From Total Asset Value Shock to Probability of Default
Merton (1974) developed the model of calculating the probability of default Pd from the total asset value
VA. This Merton’s model establishes connections among market values of equity, assets, and liabilities
within an option pricing framework. It assumes a single liability L with maturity T , typically a one-year
period. At time T , the firm’s value to the shareholders equals the difference VA − L when the asset value
VA is greater than the liabilities L. However, if the liabilities L exceed the asset value VA, then the
shareholders receive no compensation. The value of the equity E at time T is related to the value of the
assets and liabilities by the following formula:

E = max(VA − L, 0). (3.3.1)

Assuming a log-normal distribution for the asset returns , we can use the Black-Scholes-Merton equations
to relate the observable market value of equity E, and the market value of assets VA, at any time prior to
the maturity T :

E = VAN (d1)− Le−rTN (d2), (3.3.2)

where r is the risk-free interest rate, N is the cumulative standard normal distribution, and d1 and d2 are
given by:

d1 =
ln(VA

L ) + (r + 0.5σ2
VA

)T
σ2
VA

√
T

, (3.3.3)

d2 = d1− σVA

√
T , (3.3.4)

and σVA is the volatility of assets. Then, the theoretical probability of default (Pd) can be derived as:

Pd = 1−N (d2) = N (−d2). (3.3.5)

However, the asset volatilities are not directly observable and therefore need to be calculated. Depending
on the availability of specific data, the determination of asset volatility requires different approaches. We
propose the following to achieve this:
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■ For Private Firms: one way of tackling this is to analyse the total asset values over the past
years, taking into account the fact that not all assets are carried at market value and will need to be
restated.

Alternatively, the probability of default measure can be extracted from the company’s credit rating
assigned by the bank. The asset volatility can the be reverse calculated using the company’s debt
and total assets using the Merton’s model.

■ For Private Rated Firms: We calculate company’s baseline PD from S&P or Moody’s rating.
Merton’s model is then used to calculate asset volatility. In other words, we essentially derive the
asset volatility by equating the PD under the Merton model, assuming normal distribution, with
the PD derived from external rating.

■ For Listed Firms: When observable equity volatility σE is readily available, it serves as a direct
input for solving the asset volatility σVA as

σEE = N (d1)σVAVA. (3.3.6)

That is, the typical change in equity value is equal to the typical change in asset value, adjusted for
the probability of the assets surviving as N (d1) indicates. Utilising equation 3.3.3, 3.3.4, and the
formula of E as 3.3.2, the σVA is solved by

σVA =
(
VAN (d1)− Le−rTN (d2)

)
σE

N (d1)VA
(3.3.7)

Once we have all the required parameters, the final step is to calculate the stressed PD based on the
Merton’s model, using the updated total assets, debt, risk free rate, and the asset volatility.

In summary, as we move forward with our transition risk analysis, we maintain the assumption that the
VA-EBITDA ratio (Ri) and asset volatility (σVA) remain constant across different climate scenarios. With
this foundation, we leverage available carbon emission data to compute the carbon cost (CC(i, k, t)) using
Equation 3.2.3 under each climate scenario.

This computed carbon cost serves as a pivotal input, instigating the Total Asset Value Shock (VA(i, k, t))
through the application of Equations 3.2.6 and 3.2.7. Subsequently, we employ Equations 3.3.3, 3.3.4, and
3.3.5 to determine the PD (Pd) for each company. These sequential steps establish a robust methodology,
integrating Merton’s model and previous calculations, to quantify the potential default risk under different
carbon cost in different climate scenarios.

3.4 | Further Discussion: Parameter Uncertainties
In the preceding sections, we introduced our model, utilizing the carbon cost and Merton’s model to assess
the PD of companies under various climate scenarios. However, there are still a number of uncertainties

Revenue EBITDA Carbon Emission Carbon Cost Carbon Emission Carbon Cost
(USD) (USD) (Real, tonnes) (Real, USD) (Multiplier, tonnes) (Multiplier, USD)

Toyota 276.02B 0.53B 557M 116B 131M 27.5B
Nissan 79.5B 0.08B 121M 25.4B 37.9M 7.96B

Table 3.3.1: The financial status, carbon emission, and carbon cost of Toyota and Nissan companies.
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that require further exploration. One of the biggest challenges is the availability of accurate carbon
emission data.

For some of the companies, obtaining carbon emission data may be possible through sources like Bloomberg
or official company reports. However, in instances where direct carbon emission data is unavailable, a
proxy measure based on industry-level emission multipliers, as discussed in the previous section, may be
utilized.

Nevertheless, delving deeper into the reliability of carbon emission multipliers reveals their variability,
as illustrated by the comparison of Toyota and Nissan. Both Japanese car manufacturing companies
share a same carbon emission multiplier 477.2 2. Table 3.3.1 presents their financial status sourced from
Bloomberg, alongside the carbon emission and cost, utilizing an average carbon price of 210 USD per ton
of CO2. The apparent gap between the cost of carbon and EBITDA highlights a potential default risk,
particularly if the carbon price comes under immediate pressure.

This underscores the inherent instability and potential limitations of relying solely on industry-level
emission multipliers. To address these uncertainties, seeking peer references and employing clustering
methods becomes imperative. By aligning companies with similar profiles and characteristics, we can
enhance the reliability and accuracy of our carbon emission assessments in situations where direct data is
either not readily available or otherwise needs to be verified. A detailed exploration of this method is
given in 4.

3.5 | Results
To demonstrate our carbon cost sensitivity model, we searched the financial data values and the carbon
emission data of EMAAR Properties from Bloomberg and the Pitchbook. Then we calibrated the VA-
EBITDA ratio and the asset volatility to match the S&P rating of EMAAR as BBB-. The detailed data
is shown in Figure 3.5.1.

In Figure 3.5.2, we observe the dynamic change in EMAAR’s PD across distinct scenarios throughout
the designated time span. Notably, the Delayed scenario, characterized by postponed implementation of
climate policies, would necessitate a swift reduction in emissions to compensate for the temporal time loss.
As a consequence, starting from 2035, the PD in the Delayed scenario exhibits a more accelerated increase
when contrasted with the NetZero scenario. This underscores the critical impact of the timing of climate
policy implementation on EMAAR’s PD dynamics, highlighting the intricate interplay between climate
scenarios and financial risk.

Additionally, we employed the derived PD to assess the impact on Capital and the Expected Loss (EL)
for EMAAR, with EL = PD×LGD×EAD, where LGD = 0.45 and EAD = 100. Figure 3.5.3 provides
a comprehensive depiction of the expected loss and the corresponding change in capital across different
climate scenarios. This visual representation offers banks and analysts valuable insights into the carbon
cost sensitivity, facilitating a deeper understanding of the financial implications associated with different
climate scenarios for EMAAR.

2multipliers signify the tonnes of CO2 released into the atmosphere per million USD of revenue.
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Figure 3.5.1: Financial Data of Emaar Properties

Figure 3.5.2: The change of PD of the EMAAR Properties under different climate scenarios.

(a) The Capital Change (b) The Expected Loss

Figure 3.5.3: Capital Change and the Expected Loss of the EMAAR Properties under different climate
scenarios.
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3.6 | Conclusion
In summary, to obtain the change in PD of a selected obligor under various climate scenarios, we should
proceed with the following steps:

■ Retrieve the current Revenue (Rev(i, j, s, k = 0, t)), EBITDA (EBITDA(i, k = 0, t = 0)), Debt (L),
asset-volatility (σVA), Time to Maturity(T ), EV-EBIDTA ratio (Ri) from the borrowers i, and also
classify the borrower companies into different sectors s and regions j.

■ Obtain the output and product trajectories O(s, k, t) and P (s, k, t) from the NGFS G-cubed model.
Calculated the shocked revenue (Rev(i, j, s, k, t)) of the borrower company by using equation 3.2.5.

■ Obtain the carbon emission multiplier (M(j, s, t)) of each region j and sector s at time t. Calculate
the carbon emission (CE(i, j, t)) by using equation 3.2.4.

■ Calculate the carbon cost (CC(i, k, t)) of each borrower company using equation 3.2.3.

■ Then we can calculate the total asset value shock (VA(i, k, t)) by using equation 3.2.6 and 3.2.7.

■ Now we can obtain the PD (Pd) of the borrower company from the total asset value shock VA(i, k, t)
by using equations 3.3.3, 3.3.4 and 3.3.5.
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Chapter 4

Applying Cluster Analysis for Data
Calibration

4.1 | Introduction
Clustering methods play a pivotal role in data analysis and calibration by categorising entities into groups
based on shared features or patterns, providing valuable insights into underlying relationships within the
data. In the context of our analysis, clustering becomes instrumental in handling uncertainties related to
carbon emission data.

When confronted with unavailable or unreliable direct carbon emission data, clustering aids in identifying
comparable entities, thereby enhancing the precision of our carbon emission assessments. We take the
assumption that companies within the same sectors, sharing similarities in EBITDA, Revenue, Sector,
Number of Staff, and other features, are likely to exhibit comparable carbon emission patterns. This
assumption is derived from the logic that companies within a sector that use similar technologies and
energy sources to generate revenue will have similar emission profiles. Although an approximation, this
approach is more reliable than traditional emissions multipliers.

To execute these clustering methodologies, we employ k-means clustering and a cosine distance metric
based on relevant features. Through this approach, we conduct cluster analysis and proxy selection,
further refining our calibration process for carbon emission data.

4.2 | Data Preparation, Feature Selection, and Scaling
In the first steps of our data preparation process, we start by collecting extensive information about the
companies. This dataset includes vital financial indicators such as external rating, Default Probability
(PD), EBITDA, Total Revenue, Employee Count, Enterprise Values, Debt, and, if available, carbon
emission or greenhouse gas (GHG) emission. Following this, we move on to the creation of a DataFrame,
achieved either by generating synthetic data or by integrating existing data from various sources.

In the process of preparing our data, we adopt meticulous feature selection techniques. Feature selection
involves identifying and choosing variables in a dataset that exhibit a significant correlation with or impact
on the target variable. This becomes especially crucial in larger datasets, where there could be numerous
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(a) GHG Emission vs. EV for En-
ergy Utilities Sector

(b) GHG Emission vs. Revenue
for Energy Utilities Sector

(c) GHG Emission vs. EV for
Overall Energy Sector

Figure 4.2.1: EAD example on GHG Emission and Financial Data for Energy Sector.

features, some of which may lack relevance or connection to the desired output. Thus, the process of
feature selection is essential before modelling to ensure the highest level of accuracy.

We employ Exploratory Data Analysis (EDA) as a foundational step in our feature selection process. This
encompasses a comprehensive exploration of our dataset’s features and variables. Through EDA, we derive
key statistical measures such as count, mean, standard deviation, minimum, and maximum for quantitative
variables. Additionally, we visualize dynamic trends between various variables and identify correlation
factors among different features. Figure 4.2.1, a robust correlation emerges between the greenhouse gas
(GHG) emission data and both the Enterprise Value and Revenue of the companies. Figure 4.2.1c further
illustrates that distinct sub-sectors exhibit diverse patterns in the association between GHG emission data
and Enterprise Value.

Thus, for this dataset we will strategically choose Enterprise Value and Revenue as our central features
for the subsequent clustering analysis of GHG emission data. These observations underscore the intricate
relationships within the dataset, highlighting the need for nuanced analyses that consider sector-specific
dynamics, and ensuring a well-informed and targeted approach to feature selection.

Before we apply the clustering model to the data, we will also leverage the data scaling process. As for
financial dataset, the data range and distribution among all features are relatively different from one
another, not to mention some variables bearing with outliers. It is essential that we apply feature scaling
to the entire dataset consistently for the purpose of making it more digestible to clustering algorithms.

4.3 | K-Means Clustering Using Cosine Distances
K-Means clustering stands out as a widely adopted unsupervised machine learning algorithm, effectively
partitioning data points into distinct clusters. It has the ability to unveil underlying patterns and groupings
within datasets, offering valuable insights into the inherent structure of the data. In mathematical terms,
this algorithm aims to partition n observations into k clusters, assigning each observation to the cluster
with the nearest mean. The algorithm achieves this by minimizing the within-cluster variance. The
objective function is given by:

J =
k∑

i=1

ni∑
j=1

dis(xij − µi) (4.3.1)

where xij is the j-th observation in cluster i, µi is the mean of cluster i, and ni is the number of
observations in cluster i, and function dis() is the distance function that we used to calculate the distance
between the observations and the centre mean of each cluster. Here we adopt the cosine distance.
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Cosine distance calculates the cosine of the angle between two vectors, providing a measure of similarity
regardless of their magnitude. In the context of K-Means clustering, cosine distance is employed to
determine the similarity between feature vectors of different entities. If the cosine distance is close to 1,
the vectors are similar, indicating a smaller angle between them. Conversely, a cosine distance closer to -1
signifies dissimilarity.

Mathematically, for two vectors A and B, the cosine similarity is given by:

cosine similarity(A,B) = A ·B
∥A∥ · ∥B∥

where · represents the dot product and ∥∥ denotes the Euclidean norm.

To apply K-Means clustering with cosine distances, we initialize cluster centroids and iteratively assign
data points to the nearest centroid based on cosine distances. This process continues until convergence,
resulting in distinct clusters of entities with similar feature vectors.

4.4 | Calibrate the data using K-Nearest Neighbours
K-Nearest Neighbours (K-NN) is a versatile algorithm used for both classification and regression tasks. In
the context of data calibration, K-NN can be employed to estimate missing or uncertain data points, such
as GHG Emission or Asset Volatility, based on the values of their neighbouring data points.

The algorithm firstly calculates the similarity between data points, often using distance metrics like
Euclidean or cosine distances. Here, since we use the cosine distance to do the clustering, we will keep the
cosine distance to do the K-NN calibration.

For each data point with a missing GHG emission value as an example, the K-NN algorithm identifies
the K-nearest neighbours based on the available features. Once the nearest neighbours are identified,
the missing GHG emission value is imputed by considering the values of the feature from its K-nearest
neighbours. A common approach is to take the mean or weighted mean of the neighbours’ GHG emission
values.

By leveraging the information from neighbouring data points, the K-NN method provides a data-driven
approach to imputing missing values, contributing to a more complete and reliable dataset for subsequent
analyses. The choice of K (number of neighbours) and the distance metric are crucial parameters that can
be fine-tuned based on the characteristics of the dataset and the desired imputation accuracy.

In summary, K-Means clustering with cosine distances helps categorize entities with similar features, while
K-Nearest Neighbours aids in data calibration by estimating missing values based on the characteristics of
neighbouring data points. Together, these techniques contribute to a more robust and refined dataset for
subsequent analyses.

4.5 | Application: GHG Emission Data Calibration
To enhance the demonstration of our model, we generated a thousands of synthetic company data,
encompassing key financial metrics such as EBITDA, Total Revenue, Employee Count, Enterprise Value,
and GHG Emission (when available). To enhance the sector difference and feature correlations, we defined
a sensible relationship between Total Revenue and GHG Emission based on the sector. Then, in order
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Figure 4.4.1: K-Means Clustering and K-NN for hypothetical carbon emission data calibration.

to introduce an element of uncertainty, we introduced a hypothetical company with the missing GHG
Emission data. The target is to calibrate the missing GHG Emission data for this hypothetical company,
using K-Means clustering with cosine distances and the K-Nearest Neighbours approach.
The outcomes of our analysis are presented in Figure 4.4.1 and Figure 4.5.1, offering a comprehensive
insight into the clustering patterns based on EBITDA and Total Revenue features.

Additionally, the relationship between the hypothetical company and its neighbouring entities is visually
represented, providing a detailed interpretation in Figure 4.5.1. Notably, by exclusively correlating Total
Revenue with Carbon Emission, the calibrated Carbon Emission data aligns closely with Company 575,
which exhibits a similar Total Revenue to our hypothetical company. This observation elucidates the
nuanced relationships within the clustering results, underscoring the impact of specific financial features
on the calibrated data.

4.6 | Conclusion
In this chapter, we presented the application of the K-Means Clustering and K-Nearest Neighbourhood
approach as a robust method for calibrating missing values. The alignment of companies with similar
profiles and characteristics enhances the reliability of the data calibration, as demonstrated in our
application examples. Additionally, our approach not only provides a valuable framework for handling
data uncertainties but also enables informed estimations, contributing to more sustainable decision-making
processes grounded in reliable insights and well-founded approximations.
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Figure 4.5.1: Calibration result of the hypothetical company, and relevant data of the 5-nearest neighbour
companies.

4.7 | Future Work: Ricci Curvature for Clustering
Ricci curvature is utilized as a geometric measure to guide the transformation of graph structures, with
the aim of improving clustering outcomes in subsequent machine learning tasks. The approach involves
capturing and leveraging geometric information encoded in the graph’s curvature to influence the definition
of distances and, consequently, the clustering process.

Key Steps Envisioned

1. Graph Representation: The graph is represented as G = (V,E), where V is the set of vertices
(data points) and E is the set of edges.

2. Ricci Curvature: Ollivier-Ricci curvature for an edge (i, j) in the graph is denoted as κ(i, j).

3. Ricci Flow: The evolution of edge weights in Ricci flow can be represented as a differential equation,
for example:

dwij

dt
= −κ(i, j)wij

where wij is the weight of the edge (i, j) and t is time.

4. Distance Measure: The distance measure induced by Ricci flow might be expressed as a function
of the evolved edge weights, for example:

dij = f(wij)

5. Clustering Process: Given an embedding X of the graph into Euclidean space, and a clustering
algorithm like K-means:

argminclusters
n∑

i=1
∥xi − µci∥2

where xi is a data point, µci is the centroid of the cluster ci, and n is the number of data points.

6. Comparison Before and After Ricci Flow: The comparison involves evaluating the clustering
performance using an appropriate metric, for example:

Performance Metric = Compare(Ground Truth,Clustering Results)
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7. Evaluation Metrics: The evaluation metrics may include measures like Adjusted Rand Index
(ARI), Normalized Mutual Information (NMI), or others, depending on the specific goals.

Utilizing Ricci curvature and Riemannian geometry in clustering offers a unique approach that goes
beyond traditional Euclidean distance-based algorithms. By incorporating geometric properties of graphs
and capturing curvature information, this methodology has the potential to provide several advantages:

■ Incorporation of Intrinsic Geometry: Ricci curvature considers the intrinsic geometry of graphs,
providing a more nuanced measure than Euclidean distances. This can be especially beneficial when
dealing with complex data structures and non-linear relationships.

■ Preservation of Local Structures: Ricci flow transformations aim to preserve local structures in
the graph. This can be advantageous when dealing with data that exhibits intricate neighborhood
relationships, which might be overlooked by traditional methods relying solely on global Euclidean
distances.

■ Sensitive to Graph Topology: Riemannian geometry inherently takes into account the topology
of the underlying space. This sensitivity to graph topology allows for a more accurate representation
of data relationships, potentially leading to improved clustering performance.

■ Enhanced Discriminative Power: The ability of Ricci curvature to capture subtle geometric
features can enhance the discriminative power of clustering algorithms. This is particularly valuable
when dealing with datasets where class boundaries are complex and non-linear.

■ Potential for Improved Cluster Separation: The utilization of Ricci curvature may contribute
to better separation of clusters by considering the intrinsic structure of the data. This can lead to
clusters that are more representative of the underlying patterns in the data.

In summary, incorporating Ricci curvature and Riemannian geometry in clustering algorithms presents a
promising avenue for improving performance, especially in scenarios where the Euclidean distance-based
approaches may fall short in capturing the inherent complexity of the data.
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